If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50g^2-32=0
a = 50; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·50·(-32)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80}{2*50}=\frac{-80}{100} =-4/5 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80}{2*50}=\frac{80}{100} =4/5 $
| 2j^2+3j-9=0 | | 64.4^3x=16 | | 10b+(-45)=43 | | 2(x-6+x=3x-12 | | n^2-22n=0 | | n^2+40n=0 | | f^2+4f-12=0 | | 10s^2-41s+4=0 | | 3t^2-23t+14=0 | | 4x+25=6x-23 | | f^2-19f+18=0 | | 9x+15=10x+6 | | 6x+4+7x+1=0 | | 4^(-x+21)=32x | | 10n^2-65n-75=0 | | 4^(-x+21)=326x | | 6j^2-57j-30=0 | | 23w^2-47w=0 | | 48q+9q^2=-64 | | 23y=-5y^2 | | 2z^2+76z=0 | | 4k^2+88k=0 | | 49w^2+10w=0 | | 10s^2+3s-4=0 | | k^2-38k=0 | | k^2-40k=0 | | y=150.000(1.08) | | 3g^2-14g+11=0 | | 3p^2-8p-16=0 | | z^2-42z=0 | | 2(x-5)=6-3x | | 14s^2+25s=0 |